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1. Introduction

The purpose of this note is to interpret radial, homogeneous functions on Rd (d ≥ 2), viz.
|x|s (s ∈ C) as tempered distributions, and compute their Fourier transform. This note
serves as a generalization to another note, where the simpler case s ∈ R and −d < s < 0 is
examined. We will also examine analogues in the case d = 1 in this note. We first have a
proposition about existence, uniqueness, and structure of homogeneous radial distributions.

Proposition 0.1. Let d ≥ 2 and s ∈ C.

(i) Existence/Uniqueness. Suppose s 6= −d− 2k for k ∈ N≥0. Then there exists a unique
u ∈ S ′(Rd) which is radial and homogeneous, such that, when interpreted as an element
in D′(Rd \ {0}), u = |x|s.1 Furthermore, u is homogeneous of order s and radial. If
s = −d − 2k, then there still exists an extension u. However it is only unique up
to an appropriate linear combination of δ functions and its derivatives, and it is not
homogeneous.

(ii) Structure. In the case s 6= −d − 2k, any radial distribution, homogeneous of order
s, is, up to a constant multiple, of the above form, i.e. a multiple of u. In the case
s = −d−2k, then there are no radial distributions homogeneous of order s which extend
|x|s, and any distribution extending |x|s is unique up to δ functions.

Furthermore, for s 6= −d − 2k, |x|s is a meromorphic family of distributions with poles at
s = −d− 2k, k ∈ N≥0. The residues are

(−1)k21−kπd/2
1

Γ(k + d/2)

∑
|α|=k

∂2αδ

α!
.

1If a ∈ R, a > 0, then as is defined by as = elog(a)s = aRe(s)ei Im(s) log(a), where we choose the usual
branch of log.
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By “meromorphic” we mean that 〈|x|s, ϕ〉 is a meromorphic function for each test func-
tion ϕ ∈ S ′R). We will identify |x|s with the extension constructed by the Proposition.
Ocassionally |x|s will be used to refer to both the extension, and to the distribution in
D′(Rd \ {0}). Context will provide for which is meant. The Proposition will follow from its
one-dimensional analogue:

Proposition 2.1. Let s ∈ C.

(i) Existence/Uniqueness. Let s 6= −1−k, k ∈ N≥0. Then there exists a unique u ∈ S ′(R)
such that u is homogeneous, suppu ⊆ [0,∞), and when interpreted as an element in
D′(R \ {0}), u = xs+.2 Furthermore, u is homogeneous of order s. If s = −1− k, then
there still a u; however it is only unique up to delta functions and it is not homogeneous.
However it is quasi-homogeneous in a sense which will be made precise during the proof.

(ii) Structure. In the case s 6= −1− k, any distribution supported in [0,∞), homogeneous
of order s, is, up to a constant multiple, of the above form, i.e. a multiple of u in
the case. In the case s = −1 − k, then there are no distributions, supported in [0,∞)
homogeneous of order s which extend xs+, and any distribution extending xs+ is unique
up to δ functions.

Furthermore, xs+ is a meromorphic family of distributions with simple poles at s = −1−k,
k ∈ N. The residue at −1− k is (−1)k

k!
dk

dxk
δ.

We will identify xs+ with the extension constructed by the Proposition.
Remark 2.1. For Proposition 0.1, in the case s = −d− 2k, use of the term |x|s is a bit of an
abuse of notation, since it is not unique. Similarly for Proposition 2.1, in the case s = −1−k,
use of the term xs+ is an aubse of notation.

Theorem 2.2. Let d ≥ 2, and suppose s ∈ C. Then if s 6= −d− 2k, k ∈ N≥0 and if s 6= 2k,
k ∈ N≥0,

|̂x|s = fd(s)|ξ|−d−s,
where fd(s) is the meromorphic function

fd(s) = (2π)d/22s+d/2Γ

(
s+ d

2

)(
Γ
(
−s

2

))−1

with poles at −d− 2k, k ∈ N≥0.
If s = 2k, then

|̂x|s =
∑
|α|=k

(−1)k
(
k

α

)
∂2αδ.

If s = −d− 2k then3

|̂x|s =
(−1)k

k!
(π)d/22−2kΓ(d/2 + k)−1|ξ|2k (2 log(2)− 2ψ(−d/2 + k)− 2 log |ξ|+Hk − γ) ,

2x+ is defined by x+ = max(0, x).
3There is a chance there is a computation error in this formula. Use with caution.
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where ψ(z) = Γ′(z)
Γ(z)

is the digamma function, and Hk = 1 + 1/2 + · · · 1/k is the kth Harmonic
number.

We also have its one dimensional analogue. We will define xs− by

〈xs−, ϕ(x)〉 = 〈xs+, ϕ(−x)〉.
Theorem 2.3. Suppose s ∈ C. Then

x̂s+ = −iΓ(s+ 1)e−iπ/2sx−1−s
+ + iΓ(s+ 1)eiπ/2sx−1−s

−

if s 6= 0, 1, 2 . . . ,−1,−2, . . . , and

x̂s+ =
(−1)k+1

k!
ie−iπ/2

(
Hk − γ −

iπ

2
− log(x+)

)
xk++

(−1)k

k!
ieiπ/2

(
Hk − γ +

iπ

2
− log(x−)

)
xk−

if s = −1,−2, . . ..

Computing x̂s+ for s = 0, 1, . . . would require introducing other distributions, so we will
not attempt it in this note.

2. Definitions

We recall the definitions and lemmas given in my other note. Proofs can be found there.

Definition 2.4. We will call a distribution u ∈ D′(Rd \ {0}) (resp. u ∈ S ′(Rd))) homoge-
neous of order s if for all ϕ ∈ C∞c (Rd \ {0}) (resp. ϕ ∈ S(Rd))

〈u, ϕ〉 = td+s〈u, ϕt〉,
where ϕt(x) = ϕ(tx).

We recall the Euler homogeneity relation

r∂ru = su, (2.1)

where r∂r = x · ∇ is the radial vector field.

Definition 2.5. We will call a distribution u ∈ D′(Rd \ {0}) radial if

〈u, ϕ〉 = 〈u, ϕ ◦ T 〉,
whenever T ∈ SO(d) is a rotation.

Lemma 2.6. If u ∈ D′(Rd \ {0}) is radial then Lu = 0 for every vector field L such that Lx
is tangent the sphere of radius |x|.
Proposition 2.7. Suppose u ∈ S ′(Rd) is homogeneous of order s, then û. homogeneous of
order −d− s. Similarly, if u, considered as a distsribution in D′(Rd \ {0}) is radial, then so
is û.

We also recall how the Fourier transform interacts with homogeneity and being radial:

Proposition 2.8. Suppose u ∈ S ′(Rd) is homogeneous of order a, then û. homogeneous of
order −d− a. Similarly, if u, considered as a distsribution in D′(Rd \ {0}) is radial, then so
is û.
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3. Construction of extensions

In this section we will prove Propositions 0.1 and Proposition 2.1.

Proof of Proposition 2.1. We will first prove the uniqueness statement and the structure
statement about homogeneous distributions supported in [0,∞). Suppose s 6= −1 − k,
k ∈ N≥0. Let u ∈ S ′(R) be supported in [0,∞) and homogeneous of order s. Consider
u as belonging to D′(R \ {0}). Then x−s+ u ∈ D′(R \ {0}) is well-defined, homogeneous of
order 0, and supported in (0,∞). Since it is homogeneous of order 0, (2.1) implies that its
derivatives are 0. Thus x−s+ u is constant on each connected component of R \ {0}. Since it
is 0 to the left of the origin, we deduce that u = Cxs+ on R \ {0}. Assume for the moment
that the extension of xs+ to S ′(R) has been found. Then

suppu− Cxs+ ⊆ {0},

and so u−Cxs+ is a linear combination of δ functions and their derivatives. Since δ functions
and their derivatives are homogeneous of order −1−k, and u−Cxs+ is homogeneous of order
s, there are no δ functions. Thus u = Cxs+, if s 6= −1− k. The same arguments shows that
there is a unique u extending xs+, up to δ functions if s = −1− k.

Now for existence. First suppose s 6= −1 − k. We follow [1, §3.2]. Observe that if
Re(s) > −1, then xs+ ∈ L1

loc(R), and so is already a tempered distribution. If Re(s) > 0,
then in fact

d

dx
xs+ = sxs−1

+ ,

as distributions, i.e.

−
∫ ∞

0

xsϕ′(x) dx = s

∫ ∞
0

xs1ϕ(x) dx.

This allows us to consistently define xs+ for s ∈ C \ {−1,−2,−3, . . .} by

xs+ =
1

(s+ n)(s+ n− 1) · · · (s+ 1)

dn

dxn
xs+n+ ,

provided Re(s+ n) > −1 i.e.

〈xs+, ϕ〉 =
(−1)n

(s+ n)(s+ n− 1) · · · (s+ 1)

∫ ∞
0

xs+n+

dn

dxn
ϕ(x) dx.

The support condition is obvious. Homogeneity follows from the above formula and the
chain rule.

To check meromorphicity, it we observe that

d

ds
〈xs+, ϕ〉 =

(−1)n

(s+ n)(s+ n− 1) · · · (s+ 1)

∫ ∞
0

log(x+)xs+n+

dn

dxn
ϕ(x) dx,

is is well-defined provided Re(s + n) > 0. Thus xs+ is holomorphic away from s = −1 − k.
However, from the definition (for s > −1− k)

(s+ k + 1)〈xs+, ϕ〉 =
(−1)k+1

(s+ k − 1) · · · (s+ 1)

∫ ∞
0

xs−k−1
+

dk+1

dxk+1
ϕ(x) dx
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→ − 1

k!

∫ ∞
0

dk+1

dxk+1
ϕ(x) dx

=
1

k!

dk

dxk
ϕ(0).

This shows that the singularities are in fact poles with the desired residue.
Next suppose s = −1− k. For ϕ ∈ S(R) set

Pn[ϕ](x) =
n∑
j=0

dj

dxj
ϕ(0)

xj

j!
,

the nth order Taylor polynomial of ϕ at 0, and

In[ϕ](x) =
dn

dxn
ϕ(0)

log(x)

n!
−

n−1∑
j=0

dj

dxj
ϕ(0)

xj−n

j!(n− j)
.

Observe that
(In[ϕ])′(x) = x−(n+1)Pn[ϕ](x).

We define xs+ by

〈x−1−k
+ , ϕ〉 =

∫ y

0

x−1−k(ϕ(x)− Pk[ϕ](x)) dx+

∫ ∞
y

x−1−kϕ(x) dx+ Ik[ϕ](y)

for any y > 0. Both integrals are well-defined; the second clearly and the first since ϕ(x)−
Pk[ϕ](x) = O(xk+1). Defining xs+ like this certainly extends x−1−k

+ and is supported in [0,∞).
We now check that the definition does not depend on the choice of y. Suppose we used y′ > y
instead of y in the definition. Substracting the results from the two definitions yields∫ y′

y

x−1−k(ϕ(x)− Pk[ϕ](x)) dx−
∫ y′

y

ϕ(x) dx+ Ik[ϕ](y′)− Ik[ϕ](y)

= −
∫ y′

y

x−1−kPk[ϕ](x) dx+ Ik[ϕ](y′)− Ik[ϕ](y) = 0

by the fundamental theorem of calculus and the definition of Ik[ϕ].
Lastly we check (and define) the quasi-homogeneity of this distribution. By chain rule,

Pk[ϕt](x) = Pk[ϕ](tx) = (Pk[ϕ])t(x).

Thus ∫ y

0

x−1−k(ϕt(x)− Pk[ϕt](x) dx = tk
∫ ty

0

x−1−k(ϕ(x)− Pk[ϕ](x)) dx,

and ∫ ∞
y

x−1−kϕt(x) dx = tk
∫ ∞
ty

x−1−kϕ(x) dx.
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We conclude that

t1+s〈xs+, ϕt〉 − 〈xs+, ϕ〉 = t−k〈x−1−k
+ , ϕt〉 − 〈x−1−k

+ , ϕ〉 = t−kIk[ϕt](y)− Ik[ϕ](ty).

A rudimentary computation yields that this is

dk

dxk
ϕ(0)

log(y)− log(ty)

k!
= − dk

dxk
ϕ(0)

log(t)

k!
,

so

t1+s〈xs+, ϕt〉 − 〈xs+, ϕ〉 = − dk

dxk
ϕ(0)

log(t)

k!
.

Finally, we show that there is no homogeneous extension of x−1−k
+ , k ∈ N≥0. Indeed by

the structure result, it would differ from the extension x−1−k
+ we constructed above by delta

functions. Thus

u = x−1−k
+ +

N∑
`=0

c`δ
(`)(0)

is homogeneous. Examining the homogeneity of the δ functions and the quasi-homogeneity
of x−1−k

+ shows that this is impossible. Indeed, if ϕ ∈ S(R), then

〈u, ϕ〉 = t−k〈u, ϕt〉 = 〈x−1−k
+ , ϕ〉 − dk

dxk
ϕ(0)

log(t)

k!
+ t−k+`

N∑
`=0

c`(−1)`ϕ`(0).

In particular, choosing a ϕ whose derivatives of order k and order ` = 0, 1 . . . , N do not
vanish, we see that the left-hand side is constant, bu the right-hand side is certainly not
since all terms have different orders of growth.

We have an alternative construction of xs+ similiar in spirit to x−1−k
+ which we now

provide.

Lemma 2.9. For s ∈ C, and k ∈ N≥0 with Re(s+ k+ 1) > 0 (s+ k+ 1 6= 0) and ϕ ∈ S(R)
set

Ik,s[ϕ](y) =
dk

dyk
ϕ(0)

ys+k+1

k!(s+ 1 + k)
+

k−1∑
j=0

dj

dyj
ϕ(0)

yj−k

j!(j + s+ 1)
.

Then
〈xs+, ϕ〉 =

∫ y

0

xs(ϕ(x)− Pk[ϕ](x)) dx+

∫ ∞
y

xsϕ(x) dx+ Ik,s[ϕ](y).

Proof. One easily checks as in the proof of Proposition 2.1 that the right-hand side is well-
defined, extends xs+, and is homogeneous rather than quasi-homogeneous. Uniqueness then
proves the lemma.

We are now in a position to prove Proposition 0.1.
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Proof of Proposition 0.1. The proof of uniqueness and structure statement are similar to the
proof of 2.1. Suppose s 6= −d − 2k, k ∈ N≥0. If u is radial and homogeneous of order s,
then |x|−su, considered as a distribution in D′(Rd \{0}), is radial and homogeneous of order
0. Thus ∂r|x|−su = 0. If L is a vector field with Lx tangent to the sphere of radius |x|
then, being radial, L(|x|−su) = 0. Thus ∇(|x|−su) = 0, and so u = C|x|s as elements of
D′(Rd \ {0}). Assume we have defined a radial extension |x|s. This means that u−C|x|s is
a linear combination of δ functions. If s 6= −d − k, then there are no δ functions since the
extension is homogeneous of order s 6= −d− k.

If s = −d− k, and k is odd, we need to show that there are also no delta functions. This
will follow from the following easy lemma:

Lemma 2.10. Suppose I is a set of multi-indices and

v =
∑
α∈I

(−i)αcα∂αδ.

Then v is radial and homogeneous of order s if and only if s = −d − 2k, k ∈ N≥0, and
I = {2β : β ∈ J} where J contains all multi-indices of length k, and cα = C

(
k
α/2

)
is the

multinomial coefficient, and C is a fixed constant not depending on α.

Proof. Taking the Fourier transform, we know that v̂ is on the one hand a polynomial p(x)
and on the other hand is homogeneous and radial. This means that p(x) = C|x|−d−s for
some constant C. For p to be a polynomial means that s = −d− 2k for k ∈ N≥0. The other
direction follows from the reverse argument.

This proves the structure statement. The uniqueness statement follows from the same
argument.

Next for existence. Since suppxs+ ⊆ [0,∞), xs+ is really a distribution on those ϕ defined
on [0,∞), Schwartz at ∞ and smooth to 0 (indeed by Borel’s lemma we may extend ϕ arbi-
trarily to S(R); the support condition means the choice of extension does not matter. That
we have the desired estimates making the functional continous is clear from the definition of
xs+). Call this space S([0,∞)). One checks that for ϕ ∈ S(Rd) the map

F [ϕ](r) =

∫
Sd−1

ϕ(rθ) dθ

is in S([0,∞)) and furthermore F : S(Rd) → S([0,∞)) is continuous, where the codomain
is given the obvious topology (the topology where one-sided dervatives takes taken at 0).

The only thing to check is that F [ϕ] is smooth down to 0. We use Taylor’s theorem to
write

ϕ(rθ) =
∑
|α|≤N

∂αϕ(0)
r|α|θα

α!
+RN(r, θ),

where
RN(r, θ) =

∑
|α|=N+1

(N + 1)θα

α!

∫ r

0

(r − t)N∂αϕ(tθ) dt.
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We observe then that ∂jrRN(r, θ) ∈ O(rN+1−j) as r → 0 uniformly in θ for j ≤ N . Plugging
this in shows the desired smoothnes down to 0.

Mimicing polar coordinates, we may define

〈|x|s, ϕ〉 := 〈rs+d−1
+ , F [ϕ]〉.

Since F [ϕt] = F [ϕ]t, if s 6= −d− k for k ∈ N≥0, homogeneity is clear. Since F [ϕ] = F [ϕ ◦T ]
for T ∈ SO(d), |x|s is also radial. Integrating in polar coordinates shows that this distribution
extends |x|s.

Unlike in Proposition 2.1, the existence of such a distribution defined for all s does not
rule out the existence of a homogeneous extension of |x|−d−k, for k ∈ N≥0. In fact, the
distribution defined above is homogeneous if k is odd, but is not if k is even. By quasi-
homogeneity, the “defect” in homogeneity is proportional to dk

drk
F [ϕ](0). If k is odd, we will

show this quantity always vanishes. If k is even, we will show that there are ϕ for which it
does not.

We again use Taylor’s theorem,

ϕ(rθ) =
∑
|α|≤N

∂αϕ(0)
r|α|θα

α!
+RN(r, θ),

where ∂jrRN(rθ) = O(rN+1−j) as r → 0. Here α is a multi-index and we use multi-index
notation. By symmetry,

∫
Sn−1 θ

α dθ = 0 unless all components of α are even, in which case
the integral is non-zero. Indeed, the sphere has reflective symmetry θi 7→ −θi, and if αi is
odd then θα picks up a sign under this reflection. Thus,

∂krϕ(r, θ) =
∑
|α|=k

∂αϕ(0)
k!

α!
θα + SN(r, θ),

where SN(r, θ) = O(r). In particular if k is odd then the leading terms all have integral 0,
and so

dk

drk
F [ϕ](0) = lim

r→0

∫
∂k

∂rk
ϕ(r, θ) dθ = lim

r→0
O(r) = 0.

However, if k is even, then it is always possible to construct a ϕ with ∂αϕ(0) 6= 0, and
so a ϕ can always be chosen with the defect non-zero. This analysis rules out the possibility
of a homogeneous radial extension if k is even by the same argument as in Proposition 2.1.

Another way to see the non-existence is to consider the Fourier transform. If u is any
radial distribution homogeneous of order −d − 2k, then its Fourier transform, û, is radial
and homogeneous of order 2k, in particular by the structure statement, is a multiple of |x|2k.
Since |x|2 is a polynomial, û is a polynomial. Thus u is a sum of δ functions, which cannot
extend |x|−d−2k.

Meromorphicity follows from the meromorphicity of rs+. A priori there can be poles at
s = −d − k for k odd. But when we compute the residues, we will show they vanish if
k is odd. From Proposition 2.1, we know that the residue of 〈|x|s, ϕ〉 at s = −d − k is
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1
k!

dk

drk
F [ϕ](0). We showed above that this vanishes if k is odd. If k is even then a similar

computation shows that it is ∑
|α|=k

∂αϕ(0)
1

α!

∫
Sd−1

θα dθ.

This is just

2
∑

|α|=k; αi even

∂αϕ(0)
1

α!

Γ((α1 + 1)/2) · · ·Γ((αd + 1)/2)

Γ((k + d)/2)
.

Replacing k with 2k and applying the duplication formula yields the form for the residue
appearing statement of the Proposition.

The appearance of Γ is explained by the following lemma.

Lemma 2.11. If αi is even for all α.∫
Sd−1

θα = 2
Γ((α1 + 1)/2) · · ·Γ((αd + 1)/2)

Γ((|α|+ d)/2)
.

Proof sketch. Let I denote the integral. Then∫
Rd

xαe−|x|
2/2 dx = I

∫ ∞
0

r|α|+d−1e−r
2/2 dr.

The second factor on the right-hand side can easily be computed by making a substitution
turning it into the integrand appearing the Γ function. The left-hand side may be evaluated
by Fubini’s theorem and then turning each factor into a Γ integrand.

This completes the proof.

We now state a lemma which will allow us to relate |x|s and xs+ for s a pole to the
regularized values of the corresponding meromorphic families.

Lemma 2.12. For k ∈ N≥0, the following convergence holds in the sense of S ′(R):

lim
ε→0+

x−1−k+ε
+ +

(−1)k+1

k!ε

dk

dxk
δ = x−1−k

+ .

Proof. We use Lemma 2.9. Set s = −1 − k + ε. Then the only terms in 〈xs+, ϕ〉, using
the representation in Lemma 2.9, which do not converge to the corresponding terms in the
definition x−1−k

+ is the first term of Ik,s. The problem is that

yε

ε
6→ log(y).

However, if we subtract 1
k!ε

dk

dxk
ϕ(0) from 〈vε, ϕ〉, then we do obtain convergence, since

yε − 1

ε
→ d

dy
yε
∣∣∣∣
y=0

= log(y).
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Corollary 2.13. Let Π denote the residue of either xs+ or |x|s at a pole, s = −1− k for the
former and s = −1− 2k for the latter, k ∈ N≥0. Then

lim
t→s

xt+ − (t− s)−1Π = xs+

and
lim
t→s
|x|t − (t− s)−1Π = |x|s.

Proof. Lemma 2.12 together with the meromorphicity proves the first statement. Indeed in
Lemma 2.12 the value we are subtracting off is precisely the residue. Since the convergence
happens from one direction, the meromorphicity implies it happens for all direction. The
second statement follows from the first and the fact that the residue of |x|t as t = s is
precisely what one gets by evaltuating the residue on F [ϕ].

4. Fourier Transforms

In this section we finally compute all the Fourier transforms of the distributions we con-
structed in the previous section.

Proof of Theorem 2.2. We know that |̂x|s is a meromorphic family of distributions with poles
when s = −d− 2k. If s = −d− 2k, then ̂|x|−d−2k is, by Corollary 2.13 the regularized value
of this family, i.e. the term of order 0 around s = −d − 2k. This is because |x|−d−2k is the
regularized value, and the Fourier transform is linear. We will show below that if −d < s < 0
then

|̂x|s = (2π)d/22s+d/2Γ

(
s+ d

2

)(
Γ
(
−s

2

))−1

|ξ|−d−s.

The last factor is holomorphic since Γ has no zeroes. Uniqueness of meromorphic continuation
means that this formula is valid as long as s 6= −d− 2k, and s 6= 2k, away from where the Γ
factor and |x|−d−s have poles. If s = 2k, then |x|s is a polynomial, whose Fourier transform
is easy to compute. If s = −d− 2k we will need to use the regularized value.

Lemma 2.14. Suppose −d < s < 0. Then |̂x|s is given by the above formula.

Proof. Let G(x) = exp(−|x|2/2) be the standard Gaussian, with Fourier transform Ĝ(ξ) =
(2π)d/2G(ξ). We know a priori that the Fourier transform of |x|s is homogeneous and radial,
is is therefore some multiple fd(s) of |ξ|−d−s. We use the definition of the Fourier transform
to determine that

fd(s)〈|ξ|−d−s, G(ξ)〉 = (2π)d/2〈|x|s, G(x)〉.

We use polar coordinates to evaluate the distributional pairing (these are actually integrals
since −d < −d − s, s < 0 and so both distributions are actually in L1

loc(R
d). The left-hand

integral is

ωd−1

∫ ∞
0

r−s−1e−r
2/2 dr = 2−s/2−1

∫ ∞
0

ρ−s/2−1e−ρ dρ = ωd−12−s/2−1Γ(−s/2).
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Similarly the right-hand integral is

ωd−12(s+d)/2−1Γ((s+ d)/2).

Putting it all together yields the desired formula.

In order to compute the Fourier transform of |x|−d−2k,we need to compute a regularized
value. The first step is to compute the regularized values of Γ(z).

Proposition 2.15. Let

Hn =
n∑
j=1

1

j

denote the nth harmonic number. Then the regularized value of Γ(z) at the pole z = −k is

(−1)k

k!
(Hk − γ),

where γ is the Euler-Mascheroni constant.

Proof. We need to examine for k ∈ Z

d

dz
(z + k)Γ(z)

∣∣∣∣
z=−k

,

since this is the regularized value.
Set Γn(z) = n!nz

(z)(z+1)···(z+n)
. Then

d

dz
Γn(z) = Γn(z)

(
log(n)−

n∑
k=0

1

z + n

)
.

One checks using Stirling’s formula that

Γn(z)

Γ(z)
→ 1

uniformly on compact subsets, at least for z > 0 and Im(z) near 0. Since

lim
n→∞

(log(n)−
n∑
k=0

1

1 + n
= −γ,

and 1
z+n
− 1

1+n
∈ O(n−2) uniformly for z in compact sets, one has that

Γn,Γ
′
n → Γ,Γ′,

respectively, uniformly on compact sets for Im(z) near 0 and z > 0. In partcular,

Γ′(1) = lim
n→∞

Γn(1)

(
log(n)−

n∑
k=0

1

z + n

)
= −γ.
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Using this we may compute the regularized value. One has that

(z + k)Γ(z) =
(z + k)(z + k − 1) · · · (z)

(z + k − 1) · · · (z)
Γ(z) =

Γ(z + k + 1)

(z + k − 1) · · · z
.

Let Ak(z) be the denominator. Then

d

dz
(z + k)Γ(z)

∣∣∣∣
z=−k

=
Γ′(1)Ak(−k)− Γ(1)A′k(−k)

Ak(−k)2
.

We know that Γ′(1) = −γ and Γ(1) = 1. Clearly Ak(−k) = (−1)kk!. One also easily checks
that

A′k(−k) =
k∑
j=1

∏
` 6=k

−` =
k∑
j=1

(−1)k−1k!

j
= (−1)k−1k!Hk.

Putting this all together proves the lemma.

Also recall that the residue of Γ(z) at z = −k is (−1)k/k!. This follows immediately from
the functional equation. If f(z) = f0 + f1(z − z0) + O(z2) is holomorphic near z0, with and
g(z) has a simple pole at z0 with residue g−1 and regularized value g0, then the regularized
value of fg at z0 is g−1f1 + g0f0. Since (s + d)/2 + k = 1/2(s + (2k + d)), the residues of
Γ((s + d)/2) and Γ(z) will differ by a factor of 2. Putting this all together (and bieng very
careful), it follows that the regualized value of |̂x|s at s = −d− 2k is

(−1)k

k!
(π)d/22−2kΓ(d/2 + k)−1|ξ|2k (2 log(2)− 2ψ(−d/2 + k)− 2 log |ξ|+Hk − γ) .

There are more elementary expressions for Γ(d/2+k) and ψ(−d/2+k) depending on whether
d is even or odd, but we will not go into that here. In all, we conclude that ̂|x|−d−2k is the
previous display.

Proof of Theorem 2.3. The proof is similar. We establish a formula first for x̂s+ valid when
−1 < s < 0 and extend this via meromorphic continuation and taking regularized values.

The Fourier transform does not taking distributions supported in [0,∞) to those sup-
ported in [0,∞), so we will need to work around this. If ϕ ∈ S(R), define ϕ∗ ∈ S(R)
by

ϕ∗(x) = ϕ(−x).

If u ∈ S ′(R), then define u∗ ∈ S ′(R) by

〈u∗, ϕ〉 = 〈u, ϕ∗〉.

We observe that û∗ = (û)∗.
We will call u ∈ S ′(R) even if u∗ = u, and odd if u∗ = −u.
The following lemma is an easy consequence of definitions and duality

Lemma 2.16. If u is even (resp. odd), then û is even (resp. odd).

12



Proof. If u is even, then u = 1
2
(u + u∗). Thus û = 1

2
(û + û∗) is even. A similar argument

holds if u is odd.

Let us set
u(s) = xs+ + (xs+)∗ = xs+ + xs−

and
v(s) = xs+ − (xs+)∗ − xs+ − xs−.

Then u(s), v(s) are even/odd, respectively, and extend the distributions |x|s and sgn(x)|x|s
from R \ {0} to R. If −1 < s < 0, then u, v ∈ L1

(loc)(R) are actually functions, and are

certainly homogeneous. So, û(s), v̂(s) are homogeneous of order −1 − s and are even/odd,
respectively. The same proof as the uniqueness/structure proof of Proposition 2.1 shows
that û(s), considered as a distribution in D(R \ {0}) is a multiple of x−1−s

+ to the right of 0,
and an a priori different multiple of x−1−s

− to the left of 0. Thus, as a tempered distribution,

û(s) = h+(s)x−1−s
+ + h−(s)x−1−s

− +
N∑
`=0

c`
d`

dx`
δ.

Homogeneity constraints mean that all c` vanish. Similarly,

v̂(s) = g+(s)x−1−s
+ + g−(s)x−1−s

− .

The upshot is that

x̂s+ =
1

2
(û(s) + v̂(s)) =

h+(s) + g+(s)

2
x−1−s

+ +
h−(s) + g−(s)

2
x−1−2
− .

So we need to find h±, g±. First, û(s) is even and v̂(s) is odd. Thus h+ = h− and
g+ = −g−. We use a similiar technique to the one used in the proof of Theorem 2.2, i.e.
testing against a Gaussian G(x) for u(s). Thus we have that

(2π)1/2

∫ ∞
−∞
|x|se−x2/2 dx = h±(s)

∫ ∞
−∞
|x|−1−se−x

2/2,

i.e.

h±(s) = π1/22s+1Γ

(
s+ 1

2

)
Γ

(
−s
2

)−1

= −2 sin
(πs

2

)
Γ(s+ 1),

where we have used the reflection formula4 and the dulplication formula.
Since v(s) is odd, testing against G(x) will not do anything. Instead, let us set H(x) =

G′(x) = −xG(x). Then Ĥ(ξ) = −i(2π)1/2H(ξ), so we may use this to compute g±(s). We
have that

−i(2π)1/2

∫ ∞
−∞
|x|s+1e−x

2/2 dx = ±g±(s)

∫ ∞
−∞
|x|−se−x2/2,

4i.e. Γ(z)−1 = Γ(1− z) sin(πz)
π
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i.e.

g±(s) = ∓iπ1/22s+1Γ
(s

2
+ 1
)

Γ

(
1− s

2

)−1

= ∓2i sin

(
1− s

2
π

)
Γ(s+ 1).

Putting it all together gives that

x̂s+ = −iΓ(s+ 1)e−iπ/2sx−1−s
+ + iΓ(s+ 1)eiπ/2sx−1−s

− .

As we would expect, by meromorphic continuation this formula remains valid so long
as s 6= −1,−2, . . . or s = 0, 1, . . .. We know that for s = −1,−2, . . ., we must take the
regularized value. From Proposition 2.15 and the discussion around, we know how to compute
it. It is

x̂−1−k
+ =

(−1)k+1

k!
ie−iπ/2

(
Hk − γ −

iπ

2
− log(x+)

)
xk++

(−1)k

k!
ieiπ/2

(
Hk − γ +

iπ

2
− log(x−)

)
xk−.
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